Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3450, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664395

RESUMO

Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.


Assuntos
Quirópteros , Furões , Vírus da Influenza A Subtipo H9N2 , Infecções por Orthomyxoviridae , Replicação Viral , Animais , Furões/virologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Quirópteros/virologia , Humanos , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Camundongos , Filogenia , Influenza Humana/transmissão , Influenza Humana/virologia , Pulmão/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue
2.
Emerg Microbes Infect ; : 2348526, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683015

RESUMO

The foot-and-mouth disease virus (FMDV) Leader proteinase Lpro inhibits host mRNA translation and blocks the interferon response which promotes viral survival. Lpro is not required for viral replication in vitro but serotype A FMDV lacking Lpro has been shown to be attenuated in cattle and pigs. However, it is not known, whether leaderless viruses can cause persistent infection in vivo after simulated natural infection and whether the attenuated phenotype is the same in other serotypes. We have generated a FMDV O/FRA/1/2001 variant lacking most of the Lpro coding region (ΔLb). Cattle were inoculated intranasopharyngeally and observed for 35 days to determine if O FRA/1/2001 ΔLb is attenuated during the acute phase of infection and whether it can maintain a persistent infection in the upper respiratory tract. We found that although this leaderless virus can replicate in vitro in different cell lines, it is unable to establish an acute infection with vesicular lesions and viral shedding nor is it able to persistently infect bovine pharyngeal tissues.

4.
Sci Rep ; 13(1): 18613, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903877

RESUMO

The concept of donor-unrestricted T cells (DURTs) comprises a heterogeneity of lymphoid cells that respond to an abundance of unconventional epitopes in a non-MHC-restricted manner. Vaccinologists strive to harness this so far underexplored branch of the immune system for new vaccines against tuberculosis. A particular division of DURTs are T cells that recognize their cognate lipid antigen in the context of CD1-molecules. Mycobacteria are characterized by a particular lipid-rich cell wall. Several of these lipids have been shown to be presented to T cells via CD1b-molecules. Guinea pigs functionally express CD1b and are hence an appropriate small animal model to study the role of CD1b-restricted, lipid-specific immune responses. In the current study, guinea pigs were vaccinated with BCG or highly-purified, liposome-formulated phosphatidylinositol-hexa-mannoside (PIM6) to assess the effect of CD1-restricted DURTs on the course of infection after virulent Mycobacterium tuberculosis (Mtb) challenge. Robust PIM6-specific T cell-responses were observed both after BCG- and PIM6-vaccination. The cellular response was significantly reduced in the presence of monoclonal, CD1b-blocking antibodies, indicating that a predominant part of this reactivity was CD1b-restricted. When animals were challenged with Mtb, BCG- and PIM6-vaccinated animals showed significantly reduced pathology, smaller necrotic granulomas in lymph node and spleen and reduced bacterial loads. While BCG conferred an almost sterile protection in this setting, compared to control animals' lesions were reduced roughly by two thirds in PIM6-vaccinated. Comprehensive histological and transcriptional analyses in the draining lymph node revealed that protected animals showed reduced transcription-levels of inflammatory cyto- and chemokines and higher levels of CD1b-expression on professional antigen cells compared to controls. Although BCG as a comparator induced by far stronger effects, our observations in the guinea pig model suggest that CD1b-restricted, PIM6-reactive DURTs contribute to immune-mediated containment of virulent Mtb.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Cobaias , Animais , Vacina BCG , Tuberculose/prevenção & controle , Vacinação , Fosfatidilinositóis
5.
Virol J ; 20(1): 110, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264455

RESUMO

BACKGROUND: The high susceptibility of carnivores to Suid Alphaherpesvirus 1 [SuAHV1, synonymous pseudorabies virus (PrV)], renders them inadvertent sentinels for the possible occurrence of Aujeszky's disease (AD) in domestic and wild swine populations. The aim of this study was to epidemiologically analyse the occurrence of PrV infections in domestic and wild animals in Germany during the last three decades and to genetically characterise the causative PrV isolates. METHODS: PrV in dogs was detected using standard virological techniques including conventional and real time PCR, virus isolation or by immunohistochemistry. Available PrV isolates were characterized by partial sequencing of the open gC reading frame and the genetic traits were compared with those of archived PrV isolates from carnivores and domestic pigs from Germany before the elimination of AD in the domestic pig population. RESULTS: During 1995 and 2022, a total of 38 cases of AD in carnivores, e.g. dogs and red foxes, were laboratory confirmed. Sequencing and subsequent phylogenetic analysis of PrV isolates established a strong connection between AD cases in carnivores and the occurrence of PrV infections in European wild boars in the end phase of and after elimination of AD from the domestic pig population. While PrV infections occur at low numbers but regularly in hunting dogs, interestingly, PrV was not observed in grey wolves in Germany. In none of 682 dead-found grey wolves and wolf-dog hybrids tested from Germany during 2006-2022 could PrV infection be detected by molecular means. CONCLUSIONS: Although PrV has been eliminated from domestic pigs, spillover infections in domestic and wild carnivores should always be expected given the endemic presence of PrV in wild pig populations. Since detection of PrV DNA and virus in carnivores is sporadic even in areas with high seroprevalence of PrV in wild pigs, it may not reflect the full diversity of PrV.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Lobos , Suínos , Animais , Sus scrofa , Pseudorraiva/epidemiologia , Herpesvirus Suídeo 1/genética , Filogenia , Estudos Soroepidemiológicos , Doenças dos Suínos/epidemiologia , Alemanha/epidemiologia
6.
Emerg Infect Dis ; 29(7): 1492-1495, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37347930

RESUMO

We found that nasal and alimentary experimental exposure of pigs to highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b was associated with marginal viral replication, without inducing any clinical manifestation or pathological changes. Only 1 of 8 pigs seroconverted, pointing to high resistance of pigs to clade 2.3.4.4b infection.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Suínos , Replicação Viral
7.
NPJ Vaccines ; 8(1): 78, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248243

RESUMO

African swine fever (ASF) has gained panzootic dimensions and commercial vaccines are still unavailable. Recently, a series of live attenuated vaccines has raised hope for an efficacious and safe vaccine, among them "ASFV-G-∆MGF". We tested the latter in an in vivo reversion to virulence study in accordance with International Cooperation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal Products guidelines. Upon forced animal passaging, a virus variant emerged that was associated with transient fever and an increased replication and shedding. However, all animals were healthy upon completion of the study and reversion to significant virulence was not observed. The genomic changes did not affect the recombination site but involved deletions and reorganizations in the terminal regions of the genome. Thus, our study underscores that in-depth safety characterization is needed for live ASF vaccines. For this particular candidate, additional studies should target long-term effects and transmission characteristics before thorough benefit-risk analysis can be carried out.

8.
Viruses ; 15(3)2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36992438

RESUMO

African swine fever (ASF) is a severe, globally important disease in domestic and wild pigs. The testing of alternative transmission routes has proven that the ASF virus (ASFV) can be efficiently transmitted to sows via semen from infected boars through artificial insemination. Boars intramuscularly inoculated with the ASFV strain "Estonia 2014" showed grossly and microscopically visible changes in the testis, epididymis, prostate, and vesicular gland. The gross lesions included hemorrhages on the scrotum, testicular membranes, and parenchyma; edema; hydroceles; and proliferations of the tunica vaginalis. Histopathologically, vasculitis and perivasculitis was detected in the testis and epididymis. Subacutely infected animals further revealed a degeneration of the testicular and epididymal tubules, pointing to the destruction of the blood-testis and blood-epididymis barriers upon disease progression. This was confirmed by evidence of semen round cells and sperm abnormalities at later time points after the infection. The histopathology was associated with the presence of viral DNA and the infectious virus, and in a limited amount with viral antigens. In most scenarios, the impact of these changes on the reproductive performance and long-term persistence of the virus is probably negligible due to the culling of the animals. However, under backyard conditions and in wild boar populations, infected males will remain in the population and the long-term fate should be further evaluated.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Masculino , Sêmen , Sus scrofa , Vírus da Febre Suína Africana/genética , Testículo
9.
Antimicrob Agents Chemother ; 67(4): e0143822, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975792

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the world's leading cause of mortality from a single bacterial pathogen. With increasing frequency, emergence of drug-resistant mycobacteria leads to failures of standard TB treatment regimens. Therefore, new anti-TB drugs are urgently required. BTZ-043 belongs to a novel class of nitrobenzothiazinones, which inhibit mycobacterial cell wall formation by covalent binding of an essential cysteine in the catalytic pocket of decaprenylphosphoryl-ß-d-ribose oxidase (DprE1). Thus, the compound blocks the formation of decaprenylphosphoryl-ß-d-arabinose, a precursor for the synthesis of arabinans. An excellent in vitro efficacy against M. tuberculosis has been demonstrated. Guinea pigs are an important small-animal model to study anti-TB drugs, as they are naturally susceptible to M. tuberculosis and develop human-like granulomas after infection. In the current study, dose-finding experiments were conducted to establish the appropriate oral dose of BTZ-043 for the guinea pig. Subsequently, it could be shown that the active compound was present at high concentrations in Mycobacterium bovis BCG-induced granulomas. To evaluate its therapeutic effect, guinea pigs were subcutaneously infected with virulent M. tuberculosis and treated with BTZ-043 for 4 weeks. BTZ-043-treated guinea pigs had reduced and less necrotic granulomas than vehicle-treated controls. In comparison to the vehicle controls a highly significant reduction of the bacterial burden was observed after BTZ-043 treatment at the site of infection and in the draining lymph node and spleen. Together, these findings indicate that BTZ-043 holds great promise as a new antimycobacterial drug.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Cobaias , Animais , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/química , Oxirredutases
10.
Emerg Microbes Infect ; 12(1): 2146537, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356059

RESUMO

African swine fever virus (ASFV), a large and complex DNA-virus circulating between soft ticks and indigenous suids in sub-Saharan Africa, has made its way into swine populations from Europe to Asia. This virus, causing a severe haemorrhagic disease (African swine fever) with very high lethality rates in wild boar and domestic pigs, has demonstrated a remarkably high genetic stability for over 10 years. Consequently, analyses into virus evolution and molecular epidemiology often struggled to provide the genetic basis to trace outbreaks while few resources have been dedicated to genomic surveillance on whole-genome level. During its recent incursion into Germany in 2020, ASFV has unexpectedly diverged into five clearly distinguishable linages with at least ten different variants characterized by high-impact mutations never identified before. Noticeably, all new variants share a frameshift mutation in the 3' end of the DNA polymerase PolX gene O174L, suggesting a causative role as possible mutator gene. Although epidemiological modelling supported the influence of increased mutation rates, it remains unknown how fast virus evolution might progress under these circumstances. Moreover, a tailored Sanger sequencing approach allowed us, for the first time, to trace variants with genomic epidemiology to regional clusters. In conclusion, our findings suggest that this new factor has the potential to dramatically influence the course of the ASFV pandemic with unknown outcome. Therefore, our work highlights the importance of genomic surveillance of ASFV on whole-genome level, the need for high-quality sequences and calls for a closer monitoring of future phenotypic changes of ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Sus scrofa , Europa (Continente)/epidemiologia , Alemanha
11.
Pathogens ; 11(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558873

RESUMO

The rapid spread of the African swine fever virus (ASFV), causing severe disease with often high fatality rates in Eurasian suids, prevails as a threat for pig populations and dependent industries worldwide. Although advancing scientific progress continually enhances our understanding of ASFV pathogenesis, alternative transmission routes for ASFV have yet to be assessed. Here, we demonstrate that ASFV can efficiently be transferred from infected boars to naïve recipient gilts through artificial insemination (AI). In modern pig production, semen from boar studs often supplies many sow herds. Thus, the infection of a boar stud presents the risk of rapidly and widely distributing ASFV within or between countries. Daily blood and semen collection from four boars after intramuscular inoculation with ASFV strain 'Estonia 2014' resulted in the detection of ASFV genomes in the semen as early as 2 dpi, in blood at 1 dpi while semen quality remained largely unaffected. Ultimately, after insemination with extended semen, 7 of 14 gilts were ASFV positive by 7 days post insemination, and all gilts were ASFV positive by 35 days post insemination. Twelve out of 13 pregnant gilts aborted or resorbed at the onset of fever. A proportion of fetuses originating from the remaining gilt showed both abnormalities and replication of ASFV in fetal tissues. Thus, we present evidence for the efficient transmission of ASFV to gilts via AI and also to implanted embryos. These results underline the critical role that boar semen could play in ASFV transmission.

12.
Pathogens ; 11(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36422637

RESUMO

In 2020, African swine fever (ASF) was first identified in German wild boar, reaching a case number of about 4400 to date. Upon experimental infection, pathology is well documented; however, data on field infections are scarce in domestic pigs and not available from wild boar, respectively. Although the ASF viral genome is considered exceptionally stable, a total of five lineages with 10 distinct virus variants of genotype II have emerged in Eastern Germany. To investigate the pathology in naturally infected wild boar and to evaluate virus variants II, III and IV for their virulence, wild boar carcasses were obtained from three different outbreak areas. The carcasses underwent virological and pathomorphological investigation. The animals revealed characteristic ASF lesions of the highest severity accompanied by bacterial infections in several cases. In particular, wild boar infected with variant IV from Spree-Neiße (SN) district showed lower viral genome loads and total viral antigen scores, but simultaneously tended to reveal more chronic lesions. Our findings indicate a protracted course of the disease at least after infection with variant IV, but need confirmation under standardized experimental conditions. There is a strong need to monitor differences in the virulence among variants to identify potential attenuation that might complicate diagnosis. In addition, veterinarians, hunters and farmers need to be made aware of less acute courses of ASF to consider this as an important differential to chronic classical swine fever.

13.
Vaccine ; 40(43): 6255-6270, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36137904

RESUMO

Swine influenza A virus (swIAV) infections in pig populations cause considerable morbidity and economic losses. Frequent reverse zoonotic incursions of human IAV boost reassortment opportunities with authentic porcine and avian-like IAV in swine herds potentially enhancing zoonotic and even pre-pandemic potential. Vaccination using adjuvanted inactivated full virus vaccines is frequently used in attempting control of swIAV infections. Accelerated antigenic drift of swIAV in large swine holdings and interference of maternal antibodies with vaccine in piglets can compromise these efforts. Potentially more efficacious modified live-attenuated vaccines (MLVs) bear the risk of reversion of MLV to virulence. Here we evaluated new MLV candidates based on cold-passaged swIAV or on reassortment-incompetent bat-IAV-swIAV chimeric viruses. Serial cold-passaging of various swIAV subtypes did not yield unambiguously temperature-sensitive mutants although safety studies in mice and pigs suggested some degree of attenuation. Chimeric bat-swIAV expressing the hemagglutinin and neuraminidase of an avian-like H1N1, in contrast, proved to be safe in mice and pigs, and a single nasal inoculation induced protective immunity against homologous challenge in pigs. Reassortant-incompetent chimeric bat-swIAV vaccines could aid in reducing the amount of swIAV circulating in pig populations, thereby increasing animal welfare, limiting economic losses and lowering the risk of zoonotic swIAV transmission.


Assuntos
Quirópteros , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Anticorpos Antivirais , Hemaglutininas , Humanos , Influenza Humana/prevenção & controle , Camundongos , Neuraminidase/genética , Vírus Reordenados/genética , Suínos , Vacinas Atenuadas , Vacinas de Produtos Inativados
14.
Pathogens ; 11(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36145428

RESUMO

African swine fever (ASF) is a pandemic threat to the global pig industry and wild suids. A safe and efficacious vaccine could monumentally assist in disease eradication. In the past years, promising live attenuated vaccine candidates emerged in proof-of-concept experiments, among which was "ASFV-G-∆MGF". In our study, we tested the vaccine candidate in three animal experiments intramuscularly in domestic pigs and orally in wild boar. Further, a macrophage-grown vaccine virus and a virus grown on permanent cells could be employed. Irrespective of the production system of the vaccine virus, a two-dose intramuscular immunization could induce close-to-sterile immunity with full clinical protection against challenge infection. After oral immunization, 50% of the vaccinees seroconverted and all responders were completely protected against subsequent challenge. All nonresponders developed ASF upon challenge with two acute lethal infections and two mild and transient courses. The latter results show a lower efficiency after oral administration that would have to be taken into consideration when designing vaccination-based control measures. Overall, our findings confirm that "ASFV-G-∆MGF" is a most promising vaccine candidate that could find its way into well-organized and controlled immunization campaigns. Further research is needed to characterize safety aspects and define possible improvements of oral efficiency.

15.
Viruses ; 14(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36146730

RESUMO

Safe sample transport is of great importance for infectious diseases diagnostics. Various treatments and buffers are used to inactivate pathogens in diagnostic samples. At the same time, adequate sample preservation, particularly of nucleic acids, is essential to allow an accurate laboratory diagnosis. For viruses with single-stranded RNA genomes of positive polarity, such as foot-and-mouth disease virus (FMDV), however, naked full-length viral RNA can itself be infectious. In order to assess the risk of infection from inactivated FMDV samples, two animal experiments were performed. In the first trial, six cattle were injected with FMDV RNA (isolate A22/IRQ/24/64) into the tongue epithelium. All animals developed clinical disease within two days and FMDV was reisolated from serum and saliva samples. In the second trial, another group of six cattle was exposed to FMDV RNA by instilling it on the tongue and spraying it into the nose. The animals were observed for 10 days after exposure. All animals remained clinically unremarkable and virus isolation as well as FMDV genome detection in serum and saliva were negative. No transfection reagent was used for any of the animal inoculations. In conclusion, cattle can be infected by injection with naked FMDV RNA, but not by non-invasive exposure to the RNA. Inactivated FMDV samples that contain full-length viral RNA carry only a negligible risk of infecting animals.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Animais , Bovinos , Vírus da Febre Aftosa/genética , Genômica , RNA Viral/genética
16.
Front Immunol ; 13: 832264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558083

RESUMO

African swine fever (ASF) is among the most devastating viral diseases of pigs and wild boar worldwide. In recent years, the disease has spread alarmingly. Despite intensive research activities, a commercialized vaccine is still not available, and efficacious live attenuated vaccine candidates raise safety concerns. From a safety perspective, inactivated preparations would be most favourable. However, both historical and more recent trials with chemical inactivation did not show an appreciable protective effect. Under the assumption that the integrity of viral particles could enhance presentation of antigens, we used gamma irradiation for inactivation. To this means, gamma irradiated ASFV "Estonia 2014" was adjuvanted with either Polygen™ or Montanide™ ISA 201 VG, respectively. Subsequently, five weaner pigs per preparation were immunized twice with a three-week interval. Six weeks after the first immunization, all animals were challenged with the highly virulent ASFV strain "Armenia 2008". Although ASFV p72-specific IgG antibodies were detectable in all vaccinated animals prior challenge, no protection could be observed. All animals developed an acute lethal course of ASF and had to be euthanized at a moderate humane endpoint within six days. Indeed, the vaccinated pigs showed even higher clinical scores and a higher inner body temperature than the control group. However, significantly lower viral loads were detectable in spleen and liver of immunized animals at the time point of euthanasia. This phenomenon suggests an immune mediated disease enhancement that needs further investigation.


Assuntos
Febre Suína Africana , Vacinas Virais , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana , Animais , Raios gama , Imunogenicidade da Vacina , Suínos , Vacinação , Vacinas Atenuadas/imunologia , Proteínas Virais , Vacinas Virais/imunologia
17.
Brain Pathol ; 32(3): e13031, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34709694

RESUMO

Herpes simplex encephalitis (HSE) is one of the most serious diseases of the nervous system in humans. However, its pathogenesis is still only poorly understood. Although several mouse models of predominantly herpes simplex virus 1 (HSV-1) infections mimic different crucial aspects of HSE, central questions remain unanswered. They comprise the specific temporofrontal tropism, viral spread within the central nervous system (CNS), as well as potential molecular and immunological barriers that drive virus into latency while only rarely resulting in severe HSE. We have recently proposed an alternative mouse model by using a pseudorabies virus (PrV) mutant that more faithfully represents the striking features of human HSE: temporofrontal meningoencephalitis with few severely, but generally only moderately to subclinically affected mice as well as characteristic behavioral abnormalities. Here, we characterized this animal model using 6- to 8-week-old female CD-1 mice in more detail. Long-term investigation over 6 months consistently revealed a biphasic course of infection accompanied by recurring clinical signs including behavioral alterations and mainly mild meningoencephalitis restricted to the temporal and frontal lobes. By histopathological and immunological analyses, we followed the kinetics and spatial distribution of inflammatory lesions as well as the underlying cytokine expression in the CNS over 21 days within the acute phase of infection. Affecting the temporal lobes, the inflammatory infiltrate was composed of lymphocytes and macrophages showing a predominantly lymphocytic shift 15 days after infection. A strong increase was observed in cytokines CXCL10, CCL2, CCL5, and CXCL1 recruiting inflammatory cells to the CNS. Unlike the majority of infected mice, strongly affected animals demonstrated extensive temporal lobe edema, which is typically present in severe human HSE cases. In summary, these results support the validity of our animal model for in-depth investigation of HSE pathogenesis.


Assuntos
Encefalite por Herpes Simples , Meningoencefalite , Animais , Sistema Nervoso Central/patologia , Citocinas , Modelos Animais de Doenças , Encefalite por Herpes Simples/diagnóstico , Encefalite por Herpes Simples/patologia , Feminino , Humanos , Camundongos , Neuropatologia
18.
Viruses ; 13(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34960633

RESUMO

The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.


Assuntos
Encefalite Viral/imunologia , Herpes Simples/imunologia , Imunidade Inata , Inflamação , Vírus da Raiva/imunologia , Raiva/imunologia , Simplexvirus/imunologia , Animais , Astrócitos/imunologia , Astrócitos/virologia , Barreira Hematoencefálica/virologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Encefalite Viral/virologia , Herpes Simples/virologia , Humanos , Microglia/imunologia , Microglia/virologia , Neuroglia/imunologia , Neuroglia/virologia , Raiva/virologia , Transdução de Sinais
19.
PLoS Pathog ; 17(12): e1010107, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879119

RESUMO

In contrast to wild type bovine viral diarhea virus (BVDV) specific double deletion mutants are not able to establish persistent infection upon infection of a pregnant heifer. Our data shows that this finding results from a defect in transfer of the virus from the mother animal to the fetus. Pregnant heifers were inoculated with such a double deletion mutant or the parental wild type virus and slaughtered pairwise on days 6, 9, 10 and 13 post infection. Viral RNA was detected via qRT-PCR and RNAscope analyses in maternal tissues for both viruses from day 6 p.i. on. However, the double deletion mutant was not detected in placenta and was only found in samples from animals infected with the wild type virus. Similarly, high levels of wild type viral RNA were present in fetal tissues whereas the genome of the double deletion mutant was not detected supporting the hypothesis of a specific inhibition of mutant virus replication in the placenta. We compared the induction of gene expression upon infection of placenta derived cell lines with wild type and mutant virus via gene array analysis. Genes important for the innate immune response were strongly upregulated by the mutant virus compared to the wild type in caruncle epithelial cells that establish the cell layer on the maternal side at the maternal-fetal interface in the placenta. Also, trophoblasts which can be found on the fetal side of the interface showed significant induction of gene expression upon infection with the mutant virus although with lower complexity. Growth curves recorded in both cell lines revealed a general reduction of virus replication in caruncular epithelial cells compared to the trophoblasts. Compared to the wild type virus this effect was dramtic for the mutant virus that reached only a TCID50 of 1.0 at 72 hours post infection.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/transmissão , Vírus da Diarreia Viral Bovina/genética , Transmissão Vertical de Doenças Infecciosas , Placenta/imunologia , Placenta/virologia , Animais , Bovinos , Feminino , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Replicação Viral
20.
Animals (Basel) ; 11(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34573568

RESUMO

African swine fever (ASF) is one of the most important and devastating viral diseases in wild boar and domestic pigs worldwide. In the absence of vaccines or treatment options, early clinical detection is crucial and requires a sound knowledge of disease characteristics. To provide practitioners and state veterinarians with detailed information, the objective of the present study was to characterize the ASF virus (ASFV) isolate "Belgium 2018/1" in subadult and weaning domestic pigs. To this end, two animal trials were performed. Trial A included eight subadult domestic pigs and trial B five weaner pigs. In general, clinical signs and pathological lesions were in line with previous studies utilizing highly virulent ASF genotype II viruses. However, in trial A, four subadult domestic pigs survived and recovered, pointing to an age-dependent outcome. The long-term fate of these survivors remains under discussion and would need further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA